Биологическая активность фуллеренов — реалии и перспективы. Часть 2

Фуллерены и нуклеиновые кислоты

При изучении взаимодействия фуллерена с нуклеиновыми кислотами методом молекулярной динамики было показано, что фуллерены прочно связываются с нуклеотидами. При этом в одноцепочечной ДНК происходит значительная деформация нуклеотидов. В отличие от ДНК, связывание C60 с РНК осуществляется только с большими канавками РНК-спирали, стабилизируя структуру РНК или трансформируя конфигурацию от вытянутой к скрученной [54]. Другими словами, методы молекулярной динамики указывают, что молекулы C60 могут отрицательно влиять на структуру, стабильность и биологические эффекты молекул ДНК. Правда, не очень понятно, как в реальности доставить изолированную молекулу фуллерена к ДНК или РНК.

Структурные изменения происходят и при ингибировании Taq ДНК-полимеразы производными фуллерена, C60(OH)20 и трисмалонатом C60, что препятствует связыванию ДНК с белком и вызывает ингибирование процесса ПЦР [55].

Изучение комплекса фуллеренола C60(OH)24 с ДНК показало, что фуллеренол связывается с фосфатным скелетом нативной двухцепочечной ДНК и с парами оснований в большой канавке натриевой соли ДНК, усиливая флуоресценцию [56]. Кроме того, водорастворимые фуллеренолы могут связываться с лямбда-ДНК, дозозависимо повышая стабильность ДНК против термической деградации [57].


Фуллерены как мембранотропные соединения

Мембранотропные свойства фуллеренов определяются высокой липофильностью фуллеренового кора. Введение аддендов в кор, при которых сохраняется общая липофильность молекул, лишь незначительно влияет на расположение соединений в мембране: вследствие дисперсионных взаимодействий между высокополяризуемым фуллереновым кором и жесткими углеводородными цепями [58].

Одним из наиболее ярких примеров вклада мембранотропных эффектов в проявление биологической активности является действие изомерных трисмалонатных производных фуллерена С60 — С3 (транс3,транс3,транс3-C63((COOH)2)3) и D3 (e,e,eC63((COOH)2)3). Оба соединения представляют собой мощные ловушки для гидроксильного радикала и супероксид-анион-радикала. Но уже по нейропротективному, противовирусному действию и действию на культуры тканей они заметно различаются, что вызвано различием их взаимодействия с мембранами [59]. Мембранотропные свойства производных фуллерена определяют и их противомикробное действие [60].

Противовирусное действие, в основе которого лежит взаимодействие с мембранами, фуллерен С60 проявляет также и в составе комплекса с ПВП. Было показано, что этот комплекс ингибирует репродукцию вирусов гриппа и способен ингибировать репродукцию ДНК-содержащих вирусов, в частности вируса простого герпеса (HSV-1). После обработки вируса гриппа типа A комплексом C60/ПВП морфология вируса была изменена: присутствовало большое количество дефектных вирионов и вирионов с поврежденной «кистью» и нарушениями липидной оболочки. Полученные данные позволяют предположить, что комплекс мешает процессу сборки в цикле репликации вируса и блокирует самонастраивание зрелых вирусных частиц [10].

Таким образом, липофильность фуллеренового кора может играть, а в некоторых случаях и играет, решающую роль во взаимодействии фуллерена и его производных с биологическими объектами как in vitro, так и in vivo.


Системы доставки лекарственных веществ на основе фуллеренов

Важнейшее направление современной химии лекарственных веществ и фармакологии представляет собой адресная доставка лекарственных препаратов, способствующая повышению эффективности их действия за счет оптимизации биораспределения. Уникальные свойства наноматериалов и их биологическая активность могут быть использованы для адресной доставки лекарственных препаратов и вакцин в ЦНС, для борьбы с онкологическими, кардиологическими и другими заболеваниями.

Существуют различные подходы к созданию подобных систем доставки, отличающиеся сложностью структур наночастиц, выступающих в роли «носителя» активного вещества. Одним из возможных носителей лекарственных веществ может служить фуллереновый модифицированный кор. Размер, форма и высокая липофильность фуллерена позволяют его молекуле довольно легко проникать в клетки и представляют собой идеальное сочетание свойств для использования его в качестве вектора для адресной доставки лекарственных веществ и трансфекции генов [2]. Одна из первых работ по медицинской химии фуллеренов была посвящена целенаправленной доставке фуллерена-фотосенситизатора к мишени с помощью олигонуклеотидной последовательности, ковалентно связанной с фуллереновым кором [61]. Для повышения эффективности действия был синтезирован конъюгат фуллерена С60 с 14-мерным олигонуклеотидом — он связывался с одноцепочечной ДНК и фиксировал фотосенситизатор (остаток фуллерена) вблизи ДНК. Естественно, это резко увеличивало эффективность действия. Для увеличения специфичности связывания фуллерена были также синтезированы соединения, содержащие в его молекуле остаток, связывающийся с малой бороздкой ДНК [62].

Для целенаправленной доставки препарата центрального действия гексаметония был использован конъюгат фуллерена С60 с 6-аминогексановой кислотой, образующий ионные пары-комплексы с гексаметонием. В результате образования комплекса высокополярная молекула периферического ацетилхолинового блокатора проникает в ЦНС, блокируя центральные эффекты, вызываемые никотином. Это является свидетельством того, что на основе функционализированной молекулы фуллерена С60 возможно создание систем транспорта полярных веществ в ЦНС [11].

Для расширения возможности использования остатка фуллерена в качестве носителя можно модифицировать его молекулу. Производные фуллерена, не обладающие цитотоксичностью и поглощающиеся клетками, были применены в качестве носителя для противоракового средства паклитаксела и подавляли рост клеток линии MCF-7 рака молочной железы человека [63]. Для обеспечения целенаправленной доставки противоопухолевого препрата доцетаксела (DTX) был создан дендримероподобный переносчик на основе фуллерена С60-PEI-FAc, представлявший собой дендример с внешним слоем из молекул фолиевой кислоты (FAc). Система доставки лекарства была получена введением в корону молекулы доцетаксела. На культивированных раковых клетках РС3 in vitro была показана высокая эффективность проникновения этой системы через клеточные мембраны, усиление апоптоза и повышение противоопухолевого действия. Аналогичное повышение активности по сравнению с немодифицированным DTX было показано в экcпериментах in vivo [64].

Конъюгат трисмалоната фуллерена С70 (TF70) с аптамером R13 представляет собой еще одну систему направленной доставки на основе полинуклеотидов. Он значительно усиливает фотодинамическую активность TF70 по отношению к клеткам карциномы легких человека А549. Этот конъюгат локализуется в липосомах и может продуцировать внутриклеточные АФК, уничтожающие опухолевые клетки [65].

На основе фуллерена возможно также создание модульных несущих систем, состоящих из тройки блоков: терапевтический блок (собственно биологически активный компонент), блок, обеспечивающий направленность действия, и блок, способный увеличивать количество биологически активных фрагментов, которые способна переносить система. В качестве такой системы предложен гексааддукт фуллерена С60, содержащий пять малонатных остатков для связывания двух терапевтических начал (фотосенситизатор пирофеофорбид-α) каждый, то есть всего десять. А шестой спейсер используется для присоединения «адресующего» остатка, в данном случае моноклонального антитела ритуксимаба [66]. Такая модульная система доставки с повторяющимися фрагментами может использоваться в ФДТ и применяться при терапии, где требуется высокая избирательность и сродство к мишени.

Липофильный характер фуллеренового кора можно использовать для создания композитных систем, проникающих через липофильные барьеры. Например, с участием некоторых производных С60С(СООН)2 были созданы системы для переноса богатых аргинином пептидов типа олигоаргининов, проникающих через двуслойные мембраны [67]. Кроме того, на основе фуллеренов можно создавать и средства для трансфекции генов. В качестве примеров можно привести так называемое «двурукое» производное фуллерена (IX) и два положительно заряженных производных — октаамино- и додекааминопроизводных фуллерена С60 [68].

Еще одна новая система доставки включает в себя фуллереновый кор, соединенный через остаток глицина с N-дезметилтамоксифеном [26].


Тераностики

Тераностики — соединения, объединяющие в одной частице два начала: терапевтическое и диагностическое (визуализирующее). В настоящее время создаются тераностики на основе объединения углеродных наноструктур и полимеров [69], а также на основе эндофуллеренов [70].

Фуллерены могут служить и в качестве терапевтических, и в качестве вспомогательных средств при создании тераностиков. При этом благодаря фуллерену тераностики могут быть не наночастицами, как обычно считается, а отдельными молекулами. В качестве примера можно привести метанофуллерен, к циклопропильному циклу которого с помощью гидрофильных цепочек были ковалентно присоединены две молекулы доксорубицина. Тем самым в одной молекуле, а не наночастице были объединены и средство доставки, и действующее начало [71].

Еще один противораковый препарат-тераностик был создан на основе фуллеренола С60(ОН)24. Опухоли, в которые вводили препарат, визуализировали с использованием фотоакустической томографии, затем термически обрабатывали ИК-лазером. В результате размер опухоли уменьшился на 72 % уже в первые два часа, а через 20 часов на месте опухоли был только небольшой пузырек [72].


Эндометаллофуллерены

Как уже отмечалось, уникальной особенностью молекул фуллеренов является наличие в них внутренней полости. Однако эта полость относительно невелика и в лучшем случае у фуллеренов размером больше С80 может включать не просто атомы, а группы атомов. Такие соединения были обнаружены одним из открывателей фуллеренов Р. Смолли и названы эндофуллерены [73]. При высокотемпературном испарении стержней из композита La2O3/ графита были получены лантансодержащие металлофуллерены [74]. Однако в толуол экстрагировался только La@C82, хотя в масс-спектре наблюдались La@C60 и La@C70, но они оказались нестабильны на воздухе и в растворах. Другими атомами, которые включаются в эндофуллерены, могут быть H, He, Ne, Ar, N, Li, Sc, Y, La, Ca, Sr, Ba, так же как и некоторые кластеры, например карбиды металлов, азотсодержащие карбиды металлов, оксиды и сульфиды металлов.

Было показано, что на основе эндометаллофуллеренов (ЭМФ) могут создаваться и противоопухолевые препараты. Так, полигидроксилированный эндоэдральный фуллерен Gd@C82(OH)22 образует в физиологическом растворе частицы размером примерно 22 нм. Эти частицы в дозе 10–7 мол/кг проявляли высокую антинеопластическую активность на мышах, не вызывая токсического действия как in vitro, так и in vivo, ингибировали рост опухолей, вмешиваясь в процессы инвазии опухоли в нормальную мышечную ткань. Это резко отличает их от обычных противоопухолевых препаратов, для которых характерно именно цитотоксическое действие. Эти результаты свидетельствуют о том, что с помощью производных фуллеренов с соответствующим образом модифицированной поверхностью может быть реализована мечта онкологов-химиотерапевтов о создании высокоэффективного, но низкотоксичного противоопухолевого препарата [8]. Противоопухолевые средства могут быть разработаны и на основе ЭМФ, не содержащих радиоактивные атомы, что повышает ценность таких препаратов для лечения рака [75].

Эндометаллофуллерены используются в радиоиммунотерапии [76]. В контрастных агентах для МРТ на основе фуллеренов сочетаются эффективная диагностика и лечебный эффект. Например, контрастирующий препарат Gd-DTPA-HSA можно модифицировать трисмалонатом С60 [77]. И тогда в действии препарата объединятся оба направления — лечебное (фуллереновый кор как фотосенсибилизатор) и диагностическое (гадолиний как контрастный агент для МРТ). В этом конъюгате HSA и карбоксифуллерен проявляют синергический эффект. Возможна разработка таких препаратов и на основе ЭМФ, включающих радиоактивные атомы, например атома 177Lu [78].

Использование эндофуллеренов для разработки контрастных агентов чрезвычайно привлекательно. Углеродный каркас этих молекул защищает атом металла, предотвращая его высвобождение в организме, поэтому такие агенты нетоксичы. При этом к фуллереновому кору возможно присоединить гидрофильные функциональные группы и «нацеливающие» агенты. С участием ЭМФ можно получать контрастные агенты не только для различных типов томографии, но и для других методов исследований. Применение ЭМФ подробно рассмотрено в обзоре [79].


Токсичность, биостабильность и биораспределение фуллеренов и их производных

Литература по изучению токсичности фуллеренов достаточно обширна. Упомянем лишь несколько обзоров [8, 80]. В них делается достаточно однозначный вывод, что сам фуллерен С60 можно отнести к безвредным соединениям. Исключение может составлять лишь ингаляционное воздействие, однако неоднократно показано, что при таком пути введения токсичность связана с размером, формой и плотностью частиц, а не с их составом [81].

Что касается конкретных токсикологических эффектов фуллерена в организме, то отметим сначала работу N. Gharbi et al. [82], которые изучали действие водной суспензии С60 (~250–1000 нм) при внутрибрюшинном введении. Не было найдено никаких проявлений ни острой, ни хронической токсичности. При этом оказалось, что фуллерен С60 проникает в печень и защищает ее от поражения свободными радикалами (на модели с ССl4). Не обнаружено никаких токсических эффектов и при исследовании токсичности комплекса фуллерена С60 с поливинилпирролидоном (С60/ПВП) [83, 84].

Одним из факторов, осложняющих применение фуллеренов в практических целях, является недостаток данных об их судьбе в организме. Такие исследования ведутся, однако их относительно немного. Большинство аналитических методов — ВЭЖХ, масс-спектрометрия и др. — далеко не всегда дают адекватные результаты. Так, если в биологической системе (организме или органе) не найден фуллерен после его введения, это не значит, что его там нет. Чаще всего это связано с методом обработки биологического материала или низкой чувствительностью метода.

Радиоизотопный метод был и остается самым надежным, однако получать меченый фуллерен — задача не простая и не дешевая. Тем не менее с использованием меченого 14С-С60 (X) было исследовано биораспределение in vivo у крыс и показано, в частности, что он проникает в мозг [85].

При пероральном введении соединение (X) очень плохо абсорбируется, в печени и в других органах наблюдаются только следы метки. А почти вся радиоактивность (до 97 %) выводится с фекалиями через 48 часов. Однако при внутривенном введении через 160 часов выводится только около 5 % активности. Эта фуллереновая кислота «слишком» липофильна для карбоновых кислот и приближается по этому показателю к «обычным» неполярным соединениям. Величина log P для свободной кислоты равна 4,5, что сравнимо с величиной для дифенилэтана (log P 4,8). Исследования биораспределения после внутривенного введения показали, что метка быстро достигает различных органов (печень, селезенка, легкие, почки, сердце и т. д., включая мозг), что указывает на способность (X), несмотря на высокую молекулярную массу (995 Да), проникать через гематоэнцефалический барьер. Как отмечают авторы, высокая липофильность этого карбоксифуллерена приводит к медленной кинетике экскреции и накоплению в определенных органах [85]. Это вызывает обеспокоенность по поводу возможного возникновения у подобных веществ долговременной токсичности или токсичности после хронического введения, поскольку со временем внутри определенных участков может достигаться токсическая концентрация или самого вещества, или продуктов его деградации.

Недавно появилось несколько работ, в которых использовался меченый фуллерен С60. Было показано, что у беременных крыс фуллерен 14С-C60, введенный в хвостовую вену в физиологическом растворе, содержащем ПВП, может проникать через плаценту [86].

С использованием 13С-меченого С60 и двух его производных [13C-пирролидинофуллерен-61,63-дикарбоновой кислоты и 13C-С60(OH)x] на мышах было показано, что производные накапливаются в основном в печени, костной и мышечной тканях и коже, тогда как немодифицированный фуллерен в основном накапливается в печени, селезенке и легких. Наблюдаются некоторые различия в зависимости от способа введения (внутривенного, внутрибрюшинного или перорального), но все выводятся через 7 дней. Таким образом, модификация фуллеренового кора оказывает значительное влияние на его биораспределение [87].

V.A. Shipelin et al. [88], после системного введения фуллерена, исследовали состояние внутренних органов-мишений крыс методом лазерной конфокальной микроскопии, окрашивая микропрепараты флуоресцентным красителем, и не обнаружили признаков воспаления.

Следует отметить, что флуоресцентные методы при исследовании биораспределения фуллеренов нужно применять с осторожностью. С одной стороны, это связано и с тем, что фуллерены хотя и обладают свойствами флюорофора, но выражены они очень слабо и практически не могут использоваться [89]. С другой стороны, сам фуллерен может гасить в растворе флуоресценцию флуорофора, например фульвовой кислоты [90] или порфириновых структур [91]. А в некоторых конъюгатах с флуоресцентными красителями фуллереновый кор способен гасить флуоресценцию связанного с ним остатка [92]. Считается, что это обусловлено перераспределением заряда между фуллереном и флуорофорным остатком и фотоиндуцированным внутримолекулярным переносом электрона [93].

На способности фуллеренового кора тушить флуоресценцию основана весьма любопытная структура — зонд, описанный K. Xu et al. [94]. Он состоит из двух функциональных фрагментов: флуоресцеина, играющего роль флуорофора и донора электронов, и фуллерена С60, действующего как акцептор электронов и аналог субстрата для трипсина. В присутствии трипсина обнаруживается усиление флуоресценции, так как комплексообразование остатка С60 с трипсином ингибирует перенос электронов.

Однако C. Schuetze et al. [95] показали, что в N-флуоресцеин-5-изотиоцианате пирролидинофуллерена С60 (XI) тушения флуоресценции не происходит.

Этот конъюгат захватывается опухолевыми клетками и проявляет фотосенситизирующие свойства. Правда, не очень понятно, почему авторы говорят о проникновении в клетки фуллерена — вышеупомянутый конъюгат нельзя сравнивать с фуллереном, так как остаток флуоресцеина как минимум не меньше остатка фуллерена (что отчетливо видно из приведенного рисунка), и весьма вероятно, что именно он и «протаскивает» фуллерен в клетку.

Работы по изучению ферментативной устойчивости наноструктур углерода ведутся уже в течение нескольких лет. Незамещенный фуллерен С60 очень медленно разлагается в природе — меченый (14С) С60 наблюдается в почве и через 12 недель [96]. Другие наноструктуры углерода (одно- и многостенные нанотрубки, нанохорны и др.) биодеградируют под действием ферментов [97]. Что же касается самого фуллерена С60, то лишь недавно появились прямые доказательства действия на него ферментов млекопитающих [98]. Поэтому следует тщательно исследовать свойства фуллеренов при разработке лекарственных препаратов.

В последнее время появляются новые методы, дающие возможность отслеживать распределение наночастиц в целом и фуллеренов в частности в живых системах. Мощным инструментом, позволяющим получать подробную информацию о взаимодействиях с опухолью и лекарством или наночастицей с течением времени, является прижизненная микроскопия. С использованием этого метода была проведена непрерывная количественная оценка динамики фуллеренов в опухолях и нормальных тканях. В частности, прижизненная микроскопия применялась для изучения внутриутробной кинетики биотрансляции производного C60-ser, вводимого внутривенно, в подкожных опухолях рака груди 4T1-luc в сравнении с нормальной тканью у живых мышей. Конъюгация C60-ser с флуоресцентным красителем PromoFluoro-633 (C60-serPF) позволила отслеживать флуоресценцию и относительную количественную оценку C60-ser in vivo [99]. Авторы считают, что, поскольку этот флуорофор (~ 650 Да) сопоставим по размеру и структуре с низкомолекулярными препаратами для лечения рака, такими как паклитаксел (854 Да), его можно рассматривать как стерически модельный препарат для исследования C60-serPF в качестве носителя лекарственного средства.

Подводя итог обсуждения биораспределения, биодеградации (биостабильности) и токсичности фуллеренов, подчеркнем, что, хотя фуллерен С60 достаточно долго остается в организме неизменным, большинство водорастворимых производных выводятся в течение нескольких недель. Такой длинный период полувыведения должен настораживать, так как биоаккумуляция может в принципе приводить к развитию отсроченных эффектов. Хотя в общем острая оральная, дермальная и ингаляционная токсичности невелики, еще слишком мало экспериментальных исследований хронической токсичности, репродуктивной токсичности и канцерогенного эффекта. При этом фуллерены и функционализированные фуллерены с более высокой растворимостью могут вести себя по-разному. Поэтому необходимо очень ответственно подходить к исследованию токсичности каждого нового производного фуллерена.


Заключение

В настоящее время фуллерены, их производные и комплексы находят все большее и большее применение. Изучение биологических свойств производных фуллеренов показало, что они обладают следующими видами активности: антиоксидантной, антибактериальной, противораковой, радиозащитной, мембранотропной, могут служить ингибиторами белков, вектором для доставки лекарств, контрастирующими агентами для МРТ и для фотодинамической терапии. При поиске лекарственных препаратов, изменяя структуру производных фуллерена, возможно обеспечить точную «подстройку» их структуры для получения лекарственного вещества с определенным биологическим эффектом или для создания средств доставки лекарственного препарата к месту воздействия без побочных эффектов в других тканях и органах. При этом остается плохо исследованным вопрос об их биораспределении и метаболизме. И так как все остальные данные свидетельствуют о перспективности дальнейшего развития исследований биологической активности фуллеренов, необходимо, на наш взгляд, усилить работы по исследованию судьбы фуллеренов в организме.


Литература

1. Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater. 2017

2. Пиотровский Л.Б. Очерки о наномедицине. – СПб.: Европейский дом, 2013. [Piotrovskiy LB. Essays on nanomedicine. Saint Petersburg: Evropeyskiy dom; 2013. 

3. Zhang GP, Sun X, George TF. Nonlinear optical response and ultrafast dynamics in C60. J Phys Chem A. 2009;

4. Albert K, Hsu HY. Carbon-Based Materials for Photo-Triggered Theranostic Applications. Molecules. 2016;

5. Osawa E. Superaromaticity. Kаgaku. 1970;

6. Бочвар Д.А., Гальперн Е.Г. О гипотетических системах: карбододекаэдре, s-икозаэдране и карбо-sикозаэдране // Доклады Академии наук СССР. – 1973. – Т. 209. – № 3. – С. 610–612. [Bochvar DA, Gal’pern EG. On hypothetical systems: carbododecahedron, s-icosahedron and carbo-s-icosahedron. Dokl Akad Nauk SSSR. 1973;

7. Елецкий А.В., Смирнов Б.М. Фуллерены и структуры углерода // Успехи физических наук. – 1995. – Т. 165. – № 9. – С. 977–1009. [Eletskiy AV, Smirnov BM. Fullerines and the structures of carbon. Uspekhi fizicheskikh nauk. 1995;

8. Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. – СПб.: Росток, 2006. [Piotrovskiy LB, Kiselev OI. Fullerenes in Biology. Saint Petersburg: Rostok; 2006.

9. Jafvert CT, Kulkarni PP. Buckminsterfullerene’s (C60) Octanol-Water Partition Coefficient (Kow) and Aqueous Solubility. Environ Sci Technol. 2008; 

10. Piotrovsky LB, Kiselev OI. Fullerenes and Viruses. Fullerenes, Nanotubes and Carbon Nanostructures. 2005;

11. Piotrovskiy LB, Litasova EV, Dumpis MA, et al. Enhanced brain penetration of hexamethonium in complexes with derivatives of fullerene C60. Dokl Biochem Biophys. 2016;

12. Sijbesma R, Srdanov G, Wudl F, et al. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc. 1993;

13. Penkova AV, Acquah SF, Piotrovskiy LB, et al. Fullerene derivatives as nano-additives in polymer composites. Russian Chemical Reviews. 2017;

14. Witte P, Beuerle F, Hartnagel U, et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem. 2007;

15. Brettreich M, Hirsch A. A highly water-soluble dendro[60] fullerene. Tetrahedron Lett. 1998;

16. Semenov KN, Charykov NA, Keskinov VN. Fullerenol Synthesis and Identification. Properties of the Fullerenol Water Solutions. J Chem Eng Data. 2011;

17. Dawid A, Gorny K, Gburski Z. The influence of distribution of hydroxyl groups on vibrational spectra of fullerenol C60(OH)24 isomers: DFT study. Spectrochim Acta A Mol Biomol Spectrosc. 2015;

18. Khakina EA, Yurkova AA, Peregudov AS, et al. Highly selective reactions of C60Cl6 with thiols for the synthesis of functionalized [60]fullerene derivatives. Chem Commun (Camb). 2012;

19. Ильин В.В., Пиотровский Л.Б Исследование стабильности пленок фуллерена С60 // Обз. клин. фармакол. лек. тер. – 2017. – Т. 15. – №. 2. – С. 42–45. [Ilyin VV, Piotrovskii LB. The study of the stability of fullerene C60 films. Reviews on Clinical Pharmacology and Drug Therapy. 2017;]. 

20. Lee J, Yamakoshi Y, Hughes JB, Kim J-H. Mechanism of C60 Photoreactivity in Water: Fate of Triplet State and Radical Anion and Production of Reactive Oxygen Species. Environ Sci Technol. 2008;

21. Calvaresi M, Zerbetto F. Baiting proteins with C60. ACS Nano. 2010;

22. Maeda-Mamiya R, Noiri E, Isobe H, et al. In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci U S A. 2010; 

23. Zhao B, He YY, Bilski PJ, Chignell CF. Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: type I vs type II mechanisms. Chem Res Toxicol. 2008;

24. Kong L, Zepp RG. Production and consumption of reactive oxygen species by fullerenes. Environ Toxicol Chem. 2012;

25. Castro E, Martinez ZS, Seong CS, et al. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors. J Med Chem. 2016;

26. Misra C, Kumar M, Sharma G, et al. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond). 2017;

27. Ikeda A, Mae T, Ueda M, et al. Improved photodynamic activities of liposome-incorporated [60]fullerene derivatives bearing a polar group. Chem Commun (Camb). 2017;

28. Asada R, Liao F, Saitoh Y, Miwa N. Photodynamic anticancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol Cell Biochem. 2014;

29. Yang XL, Fan CH, Zhu HS. Photo-induced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism. Toxicol In Vitro. 2002;

30. Doi Y, Ikeda A, Akiyama M, et al. Intracellular uptake and photodynamic activity of water-soluble [60]- and [70]fullerenes incorporated in liposomes. Chemistry. 2008;

31. Ikeda A, Matsumoto M, Akiyama M, et al. Direct and short-time uptake of [70]fullerene into the cell membrane using an exchange reaction from a [70]fullerene-gammacyclodextrin complex and the resulting photodynamic activity. Chem Commun (Camb). 2009;

32. Sperandio FF, Sharma SK, Wang M, et al. Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C70 and C84O2 Fullerene Derivatives. Nanomedicine. 2013;

33. Mizuno K, Zhiyentayev T, Huang L, et al. Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships. J Nanomed Nanotechnol. 2011;

34. Yin R, Wang M, Huang YY, et al. Photodynamic therapy with decacationic [60]fullerene monoadducts: effect of a light absorbing electron-donor antenna and micellar formulation. Nanomedicine. 2014;

35. Injac R, Prijatelj M, Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol Biol. 2013;1

36. Elshater AA, Haridy MAM, Salman MMA, et al. Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Pharmacother. 2018;

37. Zhou Y, Li J, Ma H, et al. Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy. ACS Appl Mater Interfaces. 2017;

38. Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials. 2012;

39. Inui S, Aoshima H, Nishiyama A, Itami S. Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomedicine. 2011;

40. Xiao L, Takada H, Maeda K, et al. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother. 2005;

41. Kato S, Aoshima H, Saitoh Y, Miwa N. Biological safety of LipoFullerene composed of squalane and fullerene-C60 upon mutagenesis, photocytotoxicity, and permeability into the human skin tissue. Basic Clin Pharmacol Toxicol. 2009;

42. Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine. 2017;

43. Bianco A, Corvaja C, Crisma M, et al. A Helical Peptide Receptor for [60]Fullerene. Chem Eur J. 2002;

44. Qian M, Shan Y, Guan S, et al. Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies. J Chem Inf Model. 2016;

45. Kataoka H, Ohe T, Takahashi K, et al. Novel fullerene derivatives as dual inhibitors of Hepatitis C virus NS5B polymerase and NS3/4A protease. Bioorg Med Chem Lett. 2016;

46. Ratnikova TA, Govindan PN, Salonen E, Ke PC. In vitro polymerization of microtubules with a fullerene derivative. ACS Nano. 2011;

47. Giust D, Leon D, Ballesteros-Yanez I, et al. Modulation of adenosine receptors by [60]fullerene hydrosoluble derivative in SK-N-MC cells. ACS Chem Neurosci. 2011;

48. Miao Y, Xu J, Shen Y, et al. Nanoparticle as signaling protein mimic: robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals. ACS Nano. 2014;

49. Kim JE, Lee M. Fullerene inhibits β-amyloid peptide aggregation. Biochem Biophys Res Commun. 2003;

50. Bobylev AG, Shpagina MD, Bobyleva LG, et al. Antiamyloid properties of fullerene C60 derivatives. Biophysics. 2012;

51. Makarova EG, Gordon RY, Podolski IY. Fullerene C60 Prevents Neurotoxicity Induced by Intrahippocampal Microinjection of Amyloid-β Peptide. J Nanosci Nanotechnol. 2012;

52. Gordon R, Podolski I, Makarova E, et al. Intrahippocampal Pathways Involved in Learning/Memory Mechanisms are Affected by Intracerebral Infusions of Amyloid-β25-35 Peptide and Hydrated Fullerene C60 in Rats. J Alzheimers Dis. 2017;

53. Bednarikova Z, Huy PD, Mocanu MM, et al. Fullerenol C60(OH)16 prevents amyloid fibrillization of Aβ40- in vitro and in silico approach. Phys Chem Chem Phys. 2016;

54. Xu X, Wang X, Li Y, et al. A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA. Nucleic Acids Res. 2012;

55. Nedumpully Govindan P, Monticelli L, Salonen E. Mechanism of taq DNA polymerase inhibition by fullerene derivatives: insight from computer simulations. J Phys Chem B. 2012;

56. Pinteala M, Dascalu A, Ungurenasu C. Binding fullerenol C60(OH)24 to dsDNA. Int J Nanomedicine. 2009;

57. An H, Jin B. DNA exposure to buckminsterfullerene (C60): toward DNA stability, reactivity, and replication. Environ Sci Technol. 2011;

58. Bortolus M, Parisio G, Maniero AL, Ferrarini A. Monomeric fullerenes in lipid membranes: effects of molecular shape and polarity. Langmuir. 2011;

59. Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A. 1997;

60. Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003;

61. Boutorine AS, Takasugi M, Hele`ne C, et al. Fullerene – Oligonucleotide Conjugates: Photoinduced SequenceSpecific DNA Cleavage. Angew Chem Int Ed Engl. 1995;

62. Da Ros T, Vazquez E, Spalluto G, et al. Design, synthesis and biological properties of fulleropyrrolidine derivatives as potential DNA photo-probes. J Supramol Chem. 2002;

63. Partha R, Mitchell LR, Lyon JL, et al. Buckysomes: Fullerene-Based Nanocarriers for Hydrophobic Molecule Delivery. ACS Nano. 2008;

64. Shi J, Zhang H, Wang L, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;

65. Liu Q, Xu L, Zhang X, et al. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem Asian J. 2013;

66. Rancan F, Helmreich M, Molich A, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconjug Chem. 2007;

67. Nishihara M, Perret F, Takeuchi T, et al. Arginine magic with new counterions up the sleeve. Org Biomol Chem. 2005;

68. Sitharaman B, Zakharian TY, Saraf A, et al. Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors. Mol Pharm. 2008;

69. Liu Z, Liang XJ. Nano-carbons as theranostics. Theranostics. 2012;

70. Ceron MR, Maffeis V, Stevenson S, Echegoyen L. Endohedral fullerenes: Synthesis, isolation, mono- and bis- functionalization. Inorg Chim Acta. 2017;

71. Liu JH, Cao L, Luo PG, et al. Fullerene-conjugated doxorubicin in cells. ACS Appl Mater Interfaces. 2010;

72. Krishna V, Singh A, Sharma P, et al. Polyhydroxy Fullerenes for Non-Invasive Cancer Imaging and Therapy. Small. 2010;

73. Shinohara H. Another big discovery-metallofullerenes. Philos Trans A Math Phys Eng Sci. 2016;

74. Chai Y, Guo T, Jin C, et al. Fullerenes with metals inside. J Phys Chem. 1991;

75. Meng J, Liang X, Chen X, Zhao Y. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fuller-ene derivatives for cancer therapy. Integr Biol (Camb). 2013;

76. Diener MD, Alford JM, Kennel SJ, Mirzadeh S. 212Pb@C60 and Its Water-Soluble Derivatives: Synthesis, Stability, and Suitability for Radioimmunotherapy. J Am Chem Soc. 2007;

77. Zhen M, Zheng J, Ye L, et al. Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl Mater Interfaces. 2012;

78. Shultz MD, Duchamp JC, Wilson JD, et al. Encapsulation of a radiolabeled cluster inside a fullerene cage, 177LuxLu(3 – x) N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform. J Am Chem Soc. 2010;

79. Bolskar RD. Gadofullerene MRI contrast agents. Nanomedicine (Lond). 2008;

80. Aschberger K, Johnston HJ, Stone V, et al. Review of fullerene toxicity and exposure – appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol. 2010;

81. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005;113(7):823-839. doi: 10.1289/ehp.7339. 82. Gharbi N, Pressac M, Hadchouel M, et al. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;

83. Popov VA, Tyunin MA, Zaitseva OB, et al. C60/PVP complex – No Toxicity after Introperitoneal Injection to Rats. Fullerenes, Nanotubes and Carbon Nanostructures. 2008;

84. Dumpis MA, Iljin VV, Litasova EV, et al. The acute and subacute toxicity of C60/PVP complex in vivo. Adv Nano Res. 2016;

85. Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;

86. Snyder RW, Fennell TR, Wingard CJ, et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol. 2015;

87. Wang C, Bai Y, Li H, et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo. Part Fibre Toxicol. 2016;

88. Shipelin VA, Smirnova TA, Gmoshinskii IV, Tutelyan VA. Analysis of toxicity biomarkers of fullerene C60 nanoparticles by confocal fluorescent microscopy. Bull Exp Biol Med. 2015;

89. Zhao Y, Fang Y, Jiang Y. Fluorescence study of fullerene in organic solvents at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2006;

90. Wu F, Bai Y, Mu Y, et al. Fluorescence quenching of fulvic acids by fullerene in water. Environ Pollut. 2013;

91. Pal D, Bhattacharya S. Absorption spectrophotometric, fluorescence and theoretical investigations on supramolecular interaction of a designed bisporphyrin with C60 and C70. Spectrochim Acta A Mol Biomol Spectrosc. 2011;

92. Yu W-D, Nie Y-M, Yuan H, et al. Synthesis and characterization of a highly stable zinc phenylporphyrin Isoxazoline-[60] fullerene dyad: Impact of coordination on the redox and fluorescence properties. Inorg Chem Commun. 2017;

93. Ray A, Santhosh K, Bhattacharya S. Absorption spectrophotometric, fluorescence, transient absorption and quantum chemical investigations on fullerene/ phthalocyanine supramolecular complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2011;

94. Xu K, Liu F, Ma J, Tang B. A new specific fullerene-based fluorescent probe for trypsin. Analyst. 2011;

95. Schuetze C, Ritter U, Scharff P, et al. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 with a bimolecular lipid model membrane. Mater Sci Eng C. 2011;

96. Navarro DA, Kookana RS, McLaughlin MJ, Kirby JK. Fate of radiolabeled C60 fullerenes in aged soils. Environ Pollut. 2017;

97. Vlasova, II, Kapralov AA, Michael ZP, et al. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicol Appl Pharmacol. 2016;

98. Litasova EV, Iljin VV, Sokolov AV, et al. The biodegradation of fullerene C60 by myeloperoxidase. Dokl Biochem Biophys. 2016;

99. Lapin NA, Vergara LA, Mackeyev Y, et al. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. Int J Nanomedicine. 2017